Nonadiabatic dynamics within time-dependent density functional tight binding method.
نویسندگان
چکیده
A nonadiabatic molecular dynamics is implemented in the framework of the time-dependent density functional tight binding method (TDDFTB) combined with Tully's stochastic surface hopping algorithm. The applicability of our method to complex molecular systems is illustrated on the example of the ultrafast excited state dynamics of microsolvated adenine. Our results demonstrate that in the presence of water, upon initial excitation to the S(3) (pi-pi*) state at 260 nm, an ultrafast relaxation to the S(1) state with a time constant of 16 fs is induced, followed by the radiationless decay to the ground state with a time constant of 200 fs.
منابع مشابه
Time-Dependent Real-Space Renormalization Group Method
In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...
متن کاملEffect of Curvature on the Mechanical Properties of Graphene: A Density Functional Tight-binding Approach
Due to the high cost of experimental analyses, researchers used atomistic modeling methods for predicting the mechanical behavior of the materials in the fields of nanotechnology. In the pre-sent study the Self-Consistent Charge Density Functional Tight-Binding (SCC-DFTB) was used to calculate Young's moduli and average potential energy of the straight and curved graphenes with different curvat...
متن کاملMixed quantum-classical dynamics with time-dependent external fields: A time-dependent density-functional-theory approach
A mixed quantum-classical method aimed at the study of nonadiabatic dynamics in the presence of external electromagnetic fields is developed within the framework of time-dependent density functional theory. To this end, we use a trajectory-based description of the quantum nature of the nuclear degrees of freedom according to Tully’s fewest switches trajectories surface hopping, where both the n...
متن کاملDensity-matrix representation of nonadiabatic couplings in time-dependent density functional „TDDFT... theories
Closed expressions for nonadiabatic coupling between the ground and an excited electronic state of a molecule are derived by representing the time-dependent density functional ~TDDFT! equations in a form of classical dynamics for the Kohn-Sham ~KS! single-electron density matrix. Applicability of Krylov-space-type fast algorithms to nonadiabatic TDDFT as well as the representivity of the time-d...
متن کاملLocal control theory in trajectory-based nonadiabatic dynamics
In this paper, we extend the implementation of nonadiabatic molecular dynamics within the framework of time-dependent density-functional theory in an external field described in Tavernelli et al. [Phys. Rev. A 81, 052508 (2010)] by calculating on-the-fly pulses to control the population transfer between electronic states using local control theory. Using Tully’s fewest switches trajectory surfa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. A
دوره 113 45 شماره
صفحات -
تاریخ انتشار 2009